Overview
Pre-LC/MS run
Provides tools for working with runlists to use with MassLynx (Waters
LC/MS software). Calling ras.RunlistGenerator()
launches a
Shiny app that lets you create the full data frame and a runlist.
Alternatively, ras.create.Runlist()
may be used
directly.
Post-LC/MS run
Use ras.SplitOutput()
to split the MassLynx complete
summary output file into individual data frames and write them to files.
Unless clean = FALSE
, this removes blanks and splits the
Name
and Sample Name
columns according to the
pre-LC/MS template. To only return the list of data frames and not write
to the file system, use write = FALSE
.
Workflow summary
- Call
ras.RunlistGenerator()
- Input all the runlist info under “Well input”
- Optionally: download/upload the tsv under “Full list” to save/resume a project
- Generate a runlist under “Runlist” and download the tsv
- Do experiments. Yeay!
- Call
ras.SplitOutput()
and select the MassLynx complete summary output file (the file-selection window might be hiding behind RStudio) - Analyze the results for each compound
- Publish paper!
- Design new experiments (rinse and repeat)
Example workflow
Pre-LC/MS
Here is a mock example of a populated runlist.
# str(Example_Runlist) # Run this in the console yourself
# View(Example_Runlist) # Run this in the console yourself
ras.Example_Runlist[c(1:2, 7:8, 13:14), c(1, 5, 8, 12, 14)]
#> Index LC_Position Sample_name LC_Well_Type Sample_text
#> 1 1 3:A,1 20220725_RH_Index.1 Analyte Paracetamol_0_cell_1
#> 2 2 3:A,2 20220725_RH_Index.2 Analyte Paracetamol_15_cell_1
#> 7 7 3:A,7 20220725_RH_Index.7 Analyte Paracetamol_0_STD_
#> 8 8 3:A,8 20220725_RH_Index.8 Analyte Paracetamol_0_STD_
#> 13 13 3:B,1 20220725_RH_Index.13 blank blank
#> 14 14 3:B,2 20220725_RH_Index.14 blank blank
And this is what we get from generating a final runlist version with default settings.
Final_Runlist = ras.create.Runlist(ras.Example_Runlist)
Final_Runlist[c(1, 5, 8, 12, 14, 16)]
#> # A tibble: 150 × 6
#> Index LC_Position Sample_name LC_Well_Type Sample_text Draw_Count
#> <dbl> <chr> <chr> <chr> <chr> <dbl>
#> 1 13 3:B,1 20220725_RH_Index.13 blank blank 1
#> 2 13 3:B,1 20220725_RH_Index.13 blank blank 2
#> 3 13 3:B,1 20220725_RH_Index.13 blank blank 3
#> 4 62 3:F,2 20220725_RH_Index.62 Analyte Ibuprofen_0_b… 1
#> 5 63 3:F,3 20220725_RH_Index.63 Analyte Ibuprofen_0_b… 1
#> 6 64 3:F,4 20220725_RH_Index.64 Analyte Ibuprofen_0_b… 1
#> 7 65 3:F,5 20220725_RH_Index.65 Analyte Ibuprofen_0_b… 1
#> 8 66 3:F,6 20220725_RH_Index.66 Analyte Ibuprofen_0_b… 1
#> 9 67 3:F,7 20220725_RH_Index.67 Analyte Ibuprofen_0_b… 1
#> 10 68 3:F,8 20220725_RH_Index.68 Analyte Ibuprofen_0_b… 1
#> # ℹ 140 more rows
Ready for pasting columns into MassLynx!
Post-LC/MS
Recommended to place your output file in it’s own folder.
Run ras.SplitOutput()
and select the output file.
This splits the output into its constituent data frames and (unless
write = FALSE
) writes them as individual .txt files in the
same directory as the source file. Naming convention used is “[source
file name] - [compound name]”. clean = FALSE
may be used to
not perform any data manipulation at this stage. This is recommended if
the source file was not created using the {aquaras} standard format.